Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Integrated Optics: Devices, Materials, and Technologies XXVI 2022 ; 12004, 2022.
Article in English | Scopus | ID: covidwho-1891706

ABSTRACT

Interferometric scattering microscopy is a newly emerging alternative to fluorescence microscopy in biomedical research and diagnostic testing due to its ability to detect nano-objects such as individual proteins, extracellular vesicles, and virions individually through their intrinsic elastic light scattering. To improve the signal-to-noise ratio, we developed photonic resonator interferometric scattering microscopy (PRISM) in which a photonic crystal (PC) resonator is used as the sample substrate. The scattered light is amplified by the PC through resonant near-field enhancement, which then interferes with the <1% transmitted light to create intensity contrast. Importantly, the scattered photons assume the wavevectors defined by PC's photonic band structure, resulting in the ability to utilize a non-immersion objective without significant loss at illumination density as low as 25 W/cm2. We demonstrate virus and protein detection, including highly selective capture and counting of intact pseudotype SARS-CoV-2 from saliva with sensitivity equivalent to conventional nucleic acid tests. The results showcase the promise of nanophotonic surfaces in the development of resonance-enhanced interferometric microscopies, and as a single step, room temperature, and rapid viral detection technology. © 2022 SPIE.

SELECTION OF CITATIONS
SEARCH DETAIL